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FACTORING WEAKLY COMPACT OPERA"‘ORS
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The: aimrof this note is to discuss the structure of weakly compact operators.

' We extend! results well known for Banach spaces to operators acting on Banach

spaces.
Let E and F be two Banach spaces and let T = L(E, F). Consider the follo-
wing two conditions on 7':

(wP) T is weakly preconmtpact; i.e!*T maps bounded sefuences” into ‘sequences
with weak Cauchy subsequences’; ‘
(D). T  maps, \wak Lauchv s¢ quences lrto \\euKIy cony exgent sequences.

Each weakly compact operator \enfus {(wP) and (D) and the product of‘an ope-
rator having property (D) with an wealkly precompact operaior is' weakly compact.
Moreover.-the main resuit in [1] ‘assercs that indeed each weakly compact operator
can be obtained in such a way, so the interest in studying the two above classes
(actually ideals in the sense of Pietsch) of ‘operators.

H. P. Rosenthal [11]} has obtained ‘a nice' charactenzatxon of Weakly precom-
pact operators in’ terms of basic sequences o 03

i. Theorem. An opera‘oz T S Lm F) is weahJ precompaa zf and only li T
does ‘not flx a copy of [1

T is said to flx a copy of the Banach space X plo\xded that T isian 1somQrphxsm
when restricted to some subspace of E, isémorphi¢ to:Xs

Other characterizations can be obtained by easy mocuflcations of some. resilts
due to Pelezynski [8] who considered only Lhc case whenT is- the 1dent1t3 of.a se-
parable Banach space. 154 mybodid-nobsil sdi Baived

2. Theorem. Lel E be\a-separable Banach space, F a Banach space and T=
€ L(E,I5. Then the following asserfions are equwalent v )
i) 1" fizes a copy of Ly Lo UG0S 1 soos sy 290
ii) T’ fizes a copy of €[0, 1]; 3. sl y s 3
iii) 1" fizes a copy of (x(1') for some. uncozmtable set I's

The proof of i) = ii) follows from [&j, wmle 111) = 1) can be adapted fmm [13].

H. P. Rosenthal [10] has obtained an inferesting. dichotomy for. subspacesA
of a space L,(p), related to condition iii) in Theorem 2 above: either there exisis
anfe Ll(yc) such that A @ E, (1), where dx =:fdy, oriA:contains aisubspace/com-
plemented in L,(p) and isomorphiesto {,(I') for some uncountable set 1% Tlus 1esulo
has alse an operatorial;companions |, i oo ] saran y
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3. Theorem. Lef E be a Banach lattice with' a weak order unit u>0, Fa Banah
space and T € L(E, F). Then \

i) either T’ fix a copy of (;(T") for some uncountable set T'; or .

ii) the image of T’ is conlained in the band [u’] generated by a suitable u’' € E'.

The two possibilities listed above are disjoint if E' is in addition weakly sequentially
complete.

See also [6] for a mere precise result.

\

Proof. Suppose that ii) fails. Then there are a uncountable family of pairwise dis-
joint elements uy € E’ and a family'y} € F’, y =T, such that

P (T'yy) # 0.
Here PY denotes the canonical projection of E” oxnito [u;]. Clearly, we may assume
that: || gy | = || uy | =1 and (by passing to a uncountable subset of I if neces-

sary) that
: k | P((T'yg)u| >3 :
for each y. Consider the operator S: E’ - {;(I") given by
ST, = 1D (e}, & eaps

Then by Lemma 1.1 in [10], S+T” is an isomorphism when restricted to some sub-
space .of F’ isomorphic to ((I). :

If \E is a Banach lattice with E’ weakly sequentially complete then  the
spaces [u’] are weakly compactly generated, while [,(T') is not if I' is uncoun-
table. H

If E is a separable Banach lattice with E’. weakly sequentially complete then
the subspaces of E’ contained in subspaces [u’] are precisely the separable ones.
This fact combined with the main result of [5] and Theorems 2 and 3 above pro-
vides new characterizations of weakly precompact operators :

4. Theorem. Let E be a separable Banach laltice with E’ weakly sequentzally com-
plete, F a Banach space and T € L(E, F). Then the followzny assertions are equwalent
i)\ Tis weakly precompact;
ii) T does not fix a copy of C[O, 1];
iii) Im T’ is separable.
.As!a corollary we: reobtain Lotz’s characterization of dual Banaeh lattxces
havmg the Radon-Nikodym property : i

‘5. Corollary. The following assertions are equivalent for E a separable Banach
lattice : )
i) E does not contain a copy of ll,

-ii) E does not contain a complemented copy of C[O 1] H

iii) E does not contain a ‘copy-of C[0, 1];

iv) E does not contain a copy of L,[0, 1] 3

v) E'is separable ;

vi) E'is weakly compactly generated

The restnctlons on ‘E in Theorem 4 above cannot be dropped without addltlonal\
hypotheses on T'. Here are two counterexamples. [
The first one concerns the separability of E. Consider for T the 1dent1ty of
e(I"). where I' is a uncountable set.. Then E is nonseparable (but has a strong order
unit), E’ is weakly sequentlally complclc, L weakly precompact and Im T is
nonseparable. 7
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The second counterexample concerns the restrictions on E’. R. C. James has
/ constructed in [3] an ‘example of a separable Banach space JT with nonseparable
dual and such that ‘each infinite dimensional’ subspace of JT' contains a copy of (5.
Let =: [, -+ JT an'onto mappmg Then ='is weakly precompact, defined on a
separable Banach lattice and Im =’ is nonseparable.

There is yet another characterization of weakly precompact operators due to
Odell; important in producing compact operators. An operator from a Banach space
to.another is called a Dunford- Petlis (D. P.) operator provided it maps weak Cauchy
sequences into norm convergent sequences. Odell’s characterization asserts‘that an
operator 1" '€ L(E, I)is weakly precompact'iff for each D.P. operator 'S '€ L(F,G),’
the compos1t10n SoTis compact See [12] for details. . :

The condition (D) was fII‘St considered by Grothendieck [2] who obtained con-
ditions' under which an operator verifying (D) is! weakly compact.

If an operator T has property (D) then T’ does not fix a copy of e, and verifies
also the Pelczynski’s property (u), i.e. for each weak Cauchy sequence { ZaimC. B

there is a \vcakly summable sequence (J,,),, = Im T such that

Il'n— E yL

The later two conditions are 1ndep<,ndent Consider for example the identity
of ¢, and the identity of the James’space J (which fails (u)). However, under addi= -
tional hypotheses the fact that 7' does not fix a copy of ¢, implies that T has
property (D).

6. Theorem. Let T'e L(E, F) an operator which does not fix a copy of ¢. Then T
has the property (D) in each of the following cases : .

i) E is isomorphic to an AM-space ;
ii) F does not contain a copy of e, and T has propertJ (w);
iif) E is isomorphic to a Banach lattice with an order conlmuous norm.

The following question is open : Let E be a Banach Iattlce and T €'L(E, E)
an operator wich does not fix a copy ‘of ¢, or {;. Is T weakly .compaet: 2~
Here is an example which shows that T need not be weakly compact Let

6 :ly— e given by 0'((%)”) ~( ¥ “k) Then T =0@0:l Deed l1 is not

weakly compact and 77 = 0. =

The property' (D) was studied in' [7] in connéction with the followmg two classes
of operators T' defined on Banach lattices £ and takingwalues in arbitrary Banach
spaces Foe

T is said to be ofiype A provided that T is order c-continuous, i.e:

o 0'g @, Lin E implies (Tx,), is norm. convergent in F.
T' is said to be of type B provided that
0T, [os| < KinE 1mphts (Tx,), is norm convergent in F.

Property (D) implies type B which in turn lmphes type A.'It\'was noted’that
property (D) (called there strong type B) is equiv alent to the fact that T" maps
the band B (generated by E'in E’’) into F.

In the sequel we shall study the: duahty between (WP) and type A/

.7, Theorem. Let E be a o- complete Banach lattzce with a weak order unit.u > 0,
F a Banach space and T  L(E, F).

Then T is of type A iff T can be factored through a weakly compactly generated
Banach space,



: Pmof Suppose that T 1s of t} per A Th( 1, as noted in [7 ] = maps each order ‘

intervalinto,a relativ e,ly r\eaklv eompa('L subset of F a and thus X = bpan T[—u, 1;]
is-a weakly compactly generated subspace of F. -On the othex hand x =sup(x A nu)

and T(x A nu) —» Tx for each x & L7, Lonsequentl) X D I(E). ¢
“Conversely, if T can be factored threugh'a weakly compactly genexated spaee
then T does not fix’a copy of (.. Indeed, [, is not weakly ‘compactly generatcd and’
aniy complemented subspace of a weakly ‘compactly. generated Banach ‘space so is
weakly compactly genelated Cousequently (see 171 Lemma 3. 1)1‘ is of type A. .
The result of Theorem 6 fails if,we dropthe assumption on the cxistence of
a weak order unit. See the case w hen T = ll () for I' a uncountable set

Amir and Lindenstrauss haves proved (see [1] for detaxls) that the umt ball ‘of;
the dual of a weakly compactly generated Banaeh space is'w’ sequentlally compacL
Consequently :* : (019 ;

8. Corollary. Let E be a o- complete Banach lallice wzth a weal\ order umi u>0,
F « Banach space and T € L(E, F). :

Then T is of lype A sz T, maps boundedscquence.s inlo sequences wilth w'-convergent
subsequences. I i Py el ) i 191

. The next result e‘{tends a well kno“ n fact due to Pelczynskl -4 -'

9. Prop051t10n. Let E an(l F be two Banach spaces and T e (L f') Then the!
following assertions are equivalent K'q1 q :
1) T fises, copy g 1014 £ o o s o don 00
ii) T" fizes a copy of lw; 3 99THDY LB B 03 Silquosnees e A (i
iii) Thereis;a complemented subspace X of E, isomorphic 10.ly, such that T.JX is
an lsomorphlsm and ’I(X) is complemented bl e 098 %1 fw.aoisago us

ra e 1al |
Proof Clearly, we have only to show LhaL i) = 111) For let (J,,)n be a basic se-
quence in F’ which is equivalent to the natural basis of o'and let/i' J& the canoniecal
inclusion of ¥ = Span(y,,),. into I''. If T oi is an lsomqrplusm then i oT LE \ux- ?
fies the assumptions of Lemma 1.1,in [10] Which, yields the requucd 1\ ‘
' We comes now to the duality between (wP) and typel A. ol b Tozrolnteq

10. Theorem. Lei E and F beltwo Banach laitices and T < L(E, F).o1 |
i) If F’ has a weak -order unit then T.is weakly precompact iff T"is of lype A.
ity If E is o-complele and B has a weuI\ order unit lfzen THis wealxlj precompact

lff T and T’ are of. type A.

(S

Proof i) If T'is weakly precompact then by Ploposmon 8 abow T le\ no copy;
of Lo, which implies (see. Lemma 3.1.in [1]) that: 1" is of type e 5w Ibupes ad

If 7" is of type A then by Corollary 7 above T"' | E maps bounded sequences lnto
sequences with w'- convergent subsequenees in F” Vive: mto weak Cauehy sequences
1n . ' :

ii) If 'E is ‘6-complete and T'is weakly precompact then T'fix ho copy of Lo
(in fact, {o, D {;) which implies (see Lemma 3.1 in [7]) that T is of ty pe A
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